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Problem setting

Let S and S̃ be two iid random variables, and let P1 and P2 be two communication

channels. We can choose between two measurement scenarios:

we observe S through P1 and P2, and also S̃ through P1 and P2;

we observe S twice through P1, and S̃ twice through P2.

In which of these two scenarios do we obtain the most information on the sig-

nal (S, S̃)?
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(a) Scenario 1: We observe the signal and

its independent copy twice through both

channels P1 and P2.
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(b) Scenario 2: We observe the signal twice

through channel P1 and its independent copy

twice through channel P2.

Mutual information

For random variables X and Y defined on the same probability space, we denote
by I(X ;Y ) their mutual information, that is,

I(X ;Y ) := E
[

log
(

P(X ,Y )

PX ⊗PY
(X ,Y )

)]
,

where P(X ,Y ), PX and PY are the laws of (X ,Y ), X and Y respectively.

Let S ∼ PS, where PS is a probability measure with finite support S . We define a
communication channel P over S as a family of probability measures (P(· | s))s∈S

over Rd. Let P1 and P2 be two channels overS .

Conditionally on S, we sample independently X1,X ′
1 ∼ P1(· | S), and X2,X ′

2 ∼ P2(· | S).
We consider the following question.

Do we have I(S;(X1,X ′
1))+ I(S;(X2,X ′

2))≤ 2I(S;(X1,X2)),

or, equivalently, I(X1,X ′
1)+ I(X2,X ′

2)≥ 2I(X1,X2) ?
(Q1)

Mixing Gaussian channels yields more information

Gaussian channel is defined by law of a random variable

X := f (S)+W, where f : S → Rd, W ∼ N(0, Id)

andW is independent of S.

If P1 and P2 are Gaussian channels, then the answer to Question Q1 is positive.

Class of counterexamples to Question Q1

Let S ∼ Ber(1/2), X1,X ′
1 ∼ P1(· | S) and X2,X ′

2 ∼ P2(· | S), where P1(· | s) = Ber(ε ps)
and P2(· | s) = Ber(εqs) for s ∈ {0,1} and some p0, p1,q0,q1 ≥ 0 and ε > 0.

If p0 = q1, p1 = q0, then

2I(X1,X2)− I(X1,X ′
1)− I(X2,X ′

2)≥
ε2(p0− p1)

6

6(p0+ p1)4 +o(ε2) (ε → 0). (1)

In particular, this implies that whenever p0 6= p1 and ε > 0 is sufficiently small the
answer to Question Q1 is negative.

0.001 0.003 0.005 0.007 0.009
p0 = q1

0.001

0.003

0.005

0.007

0.009

q 0
=
p 1

0.1 0.3 0.5 0.7 0.9
p0 = q1

0.1

0.3

0.5

0.7

0.9

q 0
=
p 1

0.000 0.025 0.050 0.075 0.100 0.1250 1 2 3 4
×10−5

Figure 2. Value of the 2I(X1,X2)− I(X1,X ′
1)− I(X2,X ′

2). The larger values correspond to darker
color. Left: the regime of small p0, p1. Red dashed lines are countour lines of (p0−p1)

6/(p0+p1)
4.

Right: general p0, p1 ∈ [0,1].

Mutual information in Stochastic Block Model

Stochastic Block Model (SBM)

Let GN = (V,E) be a random graph on N vertices. Each vertex is independently

assigned to a community±1, and we denote the assignment vector by σN ∈ {±1}N.

Edges are sampled independently as follows.

P((u,v) ∈ E) =

{
aN if σu = σv

bN otherwise.

We consider symmetric SBM with two communities in sparse assortative regime,

i.e. the edge probabilities scale as aN = a/N,bn = b/N, for some constant a,b,
and a > b.

Mutual information in SBM

The mutual information is given by

I(GN,σ) = E log
P(GN|σ)

P(GN)

and quantifies the information about the hidden assignment vector σ that we can

recover after observing random graph G.

Hamilton-Jacobi equations

A recent method to identify the asymptotic value of the mutual information of a

mean-field disordered system is through the solution to a certain Hamilton-Jacobi

equation.

For SBM with two communities this approach has been initiated in [2, 3].

Lower bound

Theorem (informal, [3]) The lower bound on the limit of free energy can be obtained

through the unique viscosity solution of certain Hamilton-Jacobi equation.

Upper bound

The central ingredient in showing the matching upper bound in other settings

(e.g. [1]) is concavity of the continuous mutual information.

In particular, the concavity of mutual information in the considered setting would

imply the negative semidefiniteness of the Hessian. However, (1) implies that(
1
−1

)
·
(

∂ 2
t1IN(0,0) ∂t1∂t2IN(0,0)

∂t1∂t2IN(0,0) ∂ 2
t2IN(0,0)

)(
1
−1

)
≥ 0,

where IN(t1, t2) is the continuous mutual information defined below. Conse-
quently, the Hessian is not NSD.

Theorem LetGN be an SBMwith assignment vectorσ = 2S−1, where S∼Ber(1/2).

Conditionally on σ , we sample independent r.v. X (`)
1 ∼ P1 and X (`)

2 ∼ P2, where

P1(· | s) = Ber(ps/N) and P2(· | s) = Ber(qs/N) (s ∈ {0,1}),

and p0, p1,q0,q1 ≥ 0 are such that p0 = q1 = a and p1 = q0 = b.

Then the mutual information satisfies

I(GN,σ) = IN(0,0),

where

IN(t1, t2) := I
(

S;
(
(X (`)

1 )
`≤Π

(1)
Nt1

,(X (`)
2 )

`≤Π
(2)
Nt2

))
andΠ

(1)
Nt1

∼ Poi(Nt1),Π
(2)
Nt2

∼ Poi(Nt2), independent of the all other random variables.

With this choice of parameters, the mapping (t1, t2) 7→ IN(t1, t2) is not concave for

every sufficiently large N ∈ N∪{∞}.
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