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Problem setting

Let S and S be two iid random variables, and let P; and P, be two communication
channels. We can choose between two measurement scenarios:

= we observe S through P; and P, and also S through P; and P»:
= we observe S twice through Py, and S twice through P.

In which of these two scenarios do we obtain the most information on the sig-

nal (S,5)?
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(a) Scenario 1: We observe the signal and

its independent copy twice through both
channels P; and Ps.
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(b) Scenario 2: We observe the signal twice
through channel P; and its independent copy
twice through channel P;.

Mutual information

For random variables X and Y defined on the same probability space, we denote
by I(X;Y) their mutual information, that is,

I(X;Y):=E [log (Pi;;)y (X,Y))] ,

where Py yy, Px and Py are the laws of (X,Y), X and Y respectively.

Let § ~ Ps, where Pg is a probability measure with finite support .. We define a
communication channel P over . as a family of probability measures (P(- | s))sc.o
over R?. Let P, and P be two channels over ..

Conditionally on S, we sample independently X1, X{ ~ Pi(- | S), and X2, X5 ~ Pa(- | S).
We consider the following question.

Do we have I(S;(X1,X]))+1(S;(X>,X3)) < 2I(S;(X1,X5)),

' 1
or, equivalently, I(X1,X])+1(X2,X5) > 2I(X1,X>) ? Q1)

Mixing Gaussian channels yields more information

Gaussian channel is defined by law of a random variable
X :=f(S)+W, where f:. —=RY W ~N(0,I)

and W is independent of S.

If P, and P, are Gaussian channels, then the answer to Question Q1 is positive.

Class of counterexamples to Question Q1

Let S ~Ber(1/2), X1,X{ ~ Pi(- | S) and X»,X] ~ P»(- | S), where Pi(- | s) = Ber(ep;)
and P»(- | s) = Ber(&gs) for s € {0,1} and some pg, p1,90,q1 > 0 and € > 0.

If po = g1, p1 = qo, then
£%(po —p1)®
6(po+ p1)*

In particular, this implies that whenever pg # p1 and € > 0 is sufficiently small the
answer to Question Q1 is negative.
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Figure 2. Value of the 21(X1,Xa2) —I(X1,X]) — (X2, X3). The larger values correspond to darker
color. Left: the regime of small pg, p1. Red dashed lines are countour lines of (ro=r1)°/(py+p1)*.
Right: general po, p1 € [0,1].

Mutual information in Stochastic Block Model

Stochastic Block Model (SBM)

Let Gy = (V,E) be a random graph on N vertices. Each vertex is independently
assigned to a community £1, and we denote the assignment vector by oy € {1}

Edges are sampled independently as follows. ¢« »° .
fo,=o0 R e
P((uy) € E) =N " T ek
by otherwise.

We consider symmetric SBM with two communities in sparse assortative regime,
l.e. the edge probabilities scale as ay = a/N,b, = b/N, for some constant a,b,
and a > b.

Mutual information in SBM
The mutual information is given by

P(Gw|o)

I[(Gy,0) =Elog PG}

and quantifies the information about the hidden assignment vector o that we can
recover after observing random graph G.

Hamilton-Jacobi equations

A recent method to identify the asymptotic value of the mutual information of a
mean-field disordered system is through the solution to a certain Hamilton-Jacobi
equation.

For SBM with two communities this approach has been initiated in [2, 3].

Lower bound

Theorem (informal, [3]) The lower bound on the limit of free energy can be obtained
through the unique viscosity solution of certain Hamilton-Jacobi equation.

Upper bound

The central ingredient in showing the matching upper bound in other settings
(e.g. [1]) is concavity of the continuous mutual information.

In particular, the concavity of mutual information in the considered setting would
imply the negative semidefiniteness of the Hessian. However, (1) implies that

1\ [ 9:9n(0,0) 0;,0,-7w(0,0)\ (1 >0

—1 0,,0,-x(0,0)  9;In(0,0) —1) ="
where Zy(t1,t2) is the continuous mutual information defined below. Conse-
quently, the Hessian is not NSD.

Theorem Let Gy be an SBM with assignment vector 6 =25 —1, where S ~ Ber(1/2).

Conditionally on o, we sample independent r.v. Xlw> ~ P and Xz(“g) ~ Py, where

Pi(- | s) = Ber(ps/N) (s €1{0,1}),

and po, p1,490,q1 > 0 are such that po=¢1 =a and p; = qo = b.

and  Py(- | s) = Ber(gs/N)

Then the mutual information satisfies
I(GN, G) = fN(0,0),

where

( (
IN(t1,12) =1 (S; ((Xf ))€<H](\]1)7(X2( ))£<H§V2)))
— N — N

and HZ(\}% ~ Poi(Nty), H](\?t)z ~ Poi(Nt,), independent of the all other random variables.

With this choice of parameters, the mapping (¢1,5) — Zn(t1,12) is not concave for
every sufficiently large N € NU {oo}.
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