Breakdown of a concavity property of mutual information for non-Gaussian channels

Anastasia Kireeva¹ Jean-Christophe Mourrat²

Problem setting

Let S and \tilde{S} be two iid random variables, and let P_1 and P_2 be two communication channels. We can choose between two measurement scenarios:

- we observe S through P_1 and P_2 , and also \tilde{S} through P_1 and P_2 ;
- we observe S twice through P_1 , and \tilde{S} twice through P_2 .

In which of these two scenarios do we obtain the most information on the signal (S, \tilde{S}) ?

(a) Scenario 1: We observe the signal and its independent copy twice through both channels P_1 and P_2 .

(b) **Scenario 2**: We observe the signal twice through channel P_1 and its independent copy twice through channel P_2 .

Mutual information

For random variables X and Y defined on the same probability space, we denote by I(X;Y) their mutual information, that is,

$$I(X;Y) := \mathbb{E}\left[\log\left(\frac{P_{(X,Y)}}{P_X \otimes P_Y}(X,Y)\right)\right],$$

where $P_{(X,Y)}$, P_X and P_Y are the laws of (X,Y), X and Y respectively.

Let $S \sim P_S$, where P_S is a probability measure with finite support \mathscr{S} . We define a communication channel P over \mathscr{S} as a family of probability measures $(P(\cdot \mid s))_{s \in \mathscr{S}}$ over \mathbb{R}^d . Let P_1 and P_2 be two channels over \mathscr{S} .

Conditionally on S, we sample independently $X_1, X'_1 \sim P_1(\cdot \mid S)$, and $X_2, X'_2 \sim P_2(\cdot \mid S)$. We consider the following question.

Do we have $I(S; (X_1, X'_1)) + I(S; (X_2, X'_2)) \le 2I(S; (X_1, X_2))$, (Q1) or, equivalently, $I(X_1, X_1') + I(X_2, X_2') \ge 2I(X_1, X_2)$?

Mixing Gaussian channels yields more information

Gaussian channel is defined by law of a random variable

X := f(S) + W, where $f : \mathscr{S} \to \mathbb{R}^d$, $W \sim N(0, I_d)$

and W is independent of S.

If P_1 and P_2 are Gaussian channels, then the answer to Question Q1 is **positive**.

Edges are sampled independently as follows.

 $\mathbb{P}($

and a > b.

Mutual information in SBM

The mutual information is given by

and quantifies the information about the hidden assignment vector σ that we can recover after observing random graph G.

¹ETH Zurich

Class of counterexamples to Question Q1

Let $S \sim \text{Ber}(1/2), X_1, X'_1 \sim P_1(\cdot | S)$ and $X_2, X'_2 \sim P_2(\cdot | S)$, where $P_1(\cdot | s) = \text{Ber}(\epsilon p_s)$ and $P_2(\cdot \mid s) = \text{Ber}(\varepsilon q_s)$ for $s \in \{0, 1\}$ and some $p_0, p_1, q_0, q_1 \ge 0$ and $\varepsilon > 0$.

²ENS Lyon

If $p_0 = q_1$, $p_1 = q_0$, then

$$2I(X_1, X_2) - I(X_1, X_1') - I(X_2, X_2') \ge \frac{\varepsilon^2 (p_0 - p_1)^6}{6(p_0 + p_1)^4} + o(\varepsilon^2) \qquad (\varepsilon \to 0).$$

In particular, this implies that whenever $p_0 \neq p_1$ and $\varepsilon > 0$ is sufficiently small the answer to Question Q1 is **negative**.

Figure 2. Value of the $2I(X_1, X_2) - I(X_1, X_1') - I(X_2, X_2')$. The larger values correspond to darker color. Left: the regime of small p_0, p_1 . Red dashed lines are countour lines of $(p_0-p_1)^6/(p_0+p_1)^4$. **Right:** general $p_0, p_1 \in [0, 1]$.

Mutual information in Stochastic Block Model

Stochastic Block Model (SBM)

Let $G_N = (V, E)$ be a random graph on N vertices. Each vertex is independently assigned to a community ± 1 , and we denote the assignment vector by $\sigma_N \in \{\pm 1\}^N$.

$$(u,v)\in E)=egin{cases} a_N & ext{if } \pmb{\sigma}_u=\pmb{\sigma}_v\ b_N & ext{otherwise}. \end{cases}$$

We consider symmetric SBM with **two communities** in **sparse assortative** regime, i.e. the edge probabilities scale as $a_N = a/N, b_n = b/N$, for some constant a, b,

$$I(G_N, \sigma) = \mathbb{E}\log rac{\mathbb{P}(G_N | \sigma)}{\mathbb{P}(G_N)}$$

A recent method to identify the asymptotic value of the mutual information of a mean-field disordered system is through the solution to a certain Hamilton-Jacobi equation.

For SBM with two communities this approach has been initiated in [2, 3].

Lower bound

Theorem (informal, [3]) The lower bound on the limit of free energy can be obtained through the unique viscosity solution of certain Hamilton-Jacobi equation.

Upper bound

The central ingredient in showing the matching upper bound in other settings (e.g. [1]) is **concavity** of the *continuous* mutual information.

In particular, the concavity of mutual information in the considered setting would imply the negative semidefiniteness of the Hessian. However, (1) implies that

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

quently, the Hessian is not NSD.

 $P_1(\cdot | s) = \text{Ber}(p_s/N)$ and $P_2(\cdot | s) = \text{Ber}(q_s/N)$ $(s \in \{0, 1\}),$

and $p_0, p_1, q_0, q_1 \ge 0$ are such that $p_0 = q_1 = a$ and $p_1 = q_0 = b$. Then the mutual information satisfies

where

 $\mathscr{I}_N($

and $\Pi_{Nt_1}^{(1)} \sim \text{Poi}(Nt_1)$, $\Pi_{Nt_2}^{(2)} \sim \text{Poi}(Nt_2)$, independent of the all other random variables. With this choice of parameters, the mapping $(t_1, t_2) \mapsto \mathscr{I}_N(t_1, t_2)$ is not concave for every sufficiently large $N \in \mathbb{N} \cup \{\infty\}$.

Preprint. arXiv:2209.04513. 2022.

Hamilton-Jacobi equations

$$) \cdot \begin{pmatrix} \partial_{t_1}^2 \mathscr{I}_N(0,0) & \partial_{t_1} \partial_{t_2} \mathscr{I}_N(0,0) \\ \partial_{t_1} \partial_{t_2} \mathscr{I}_N(0,0) & \partial_{t_2}^2 \mathscr{I}_N(0,0) \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \ge 0,$$

where $\mathscr{I}_N(t_1, t_2)$ is the continuous mutual information defined below. Conse-

Theorem Let G_N be an SBM with assignment vector $\sigma = 2S - 1$, where $S \sim \text{Ber}(1/2)$.

Conditionally on σ , we sample independent r.v. $X_1^{(\ell)} \sim P_1$ and $X_2^{(\ell)} \sim P_2$, where

$$I(G_N, \boldsymbol{\sigma}) = \mathscr{I}_N(0, 0),$$

$$(t_1, t_2) := I\left(S; \left((X_1^{(\ell)})_{\ell \le \Pi_{Nt_1}^{(1)}}, (X_2^{(\ell)})_{\ell \le \Pi_{Nt_2}^{(2)}} \right) \right)$$

References

^[1] Hongbin Chen, Jean-Christophe Mourrat, and Jiaming Xia. Statistical inference of finite-rank tensors. Annales Henri Lebesgue, 5:1161–1189, 2022.

^[2] Tomas Dominguez and Jean-Christophe Mourrat. Infinite-dimensional Hamilton-Jacobi equations for statistical inference on sparse graphs. Preprint, arXiv:2209.04516, 2022.

^[3] Tomas Dominguez and Jean-Christophe Mourrat. Mutual information for the sparse stochastic block model.