Breakdown of a concavity property of mutual information for non-Gaussian channels

¹ETH Zurich

²ENS Lyon

Let S and \tilde{S} be two iid random variables, and let P_1 and P_2 be two communication channels. We can choose between two measurement scenarios:

- we observe *S* through P_1 and P_2 , and also \tilde{S} through P_1 and P_2 ;
- we observe *S* twice through P_1 , and \tilde{S} twice through P_2 .

Problem setting

In which of these two scenarios do we obtain the most information on the signal (S,\tilde{S}) ?

(a) **Scenario 1:** We observe the signal and its independent copy twice through both channels P_1 and P_2 .

(b) **Scenario 2:** We observe the signal twice through channel P_1 and its independent copy twice through channel P_2 .

Do we have $I(S;(X_1,X_1))$ $I_1')$ + *I*(*S*; (*X*₂, *X*^{\prime}₂ Z_2')) $\leq 2I(S;(X_1,X_2)),$ or, equivalently, $I(X_1, X_1')$ I'_1 + $I(X_2, X'_2)$ 2^2) $\geq 2I(X_1,X_2)$? (Q1)

Mutual information

For random variables *X* and *Y* defined on the same probability space, we denote by *I*(*X*;*Y*) their *mutual information*, that is,

$$
I(X;Y) := \mathbb{E}\left[\log\left(\frac{P_{(X,Y)}}{P_X \otimes P_Y}(X,Y)\right)\right],
$$

where $P_{(X,Y)},\,P_X$ and P_Y are the laws of $(X,Y),\,X$ and Y respectively.

Let $S \sim P_S$, where P_S is a probability measure with finite support \mathscr{S} . We define a *communication channel P* over $\mathscr S$ as a family of probability measures $(P(\cdot | s))_{s \in \mathscr S}$ over \mathbb{R}^d . Let P_1 and P_2 be two channels over $\mathscr{S}.$

Conditionally on *S*, we sample independently $X_1, X'_1 \sim P_1(\cdot | S)$, and $X_2, X'_2 \sim P_2(\cdot | S)$. We consider the following question.

Figure 2. Value of the $2I(X_1,X_2)-I(X_1,X_1')$ I'_1) – $I(X_2, X'_2)$ \mathcal{L}_2^{\prime}). The larger values correspond to darker color. Left: the regime of small p_0, p_1 . Red dashed lines are countour lines of $(p_0-p_1)^6/(p_0+p_1)^4$. **Right:** general $p_0, p_1 \in [0, 1]$.

Mixing Gaussian channels yields more information

Gaussian channel is defined by law of a random variable

 $X := f(S) + W$, where $f : \mathscr{S} \to \mathbb{R}^d$, $W \sim N(0, I_d)$

and quantifies the information about the hidden assignment vector σ that we can recover after observing random graph *G*.

Anastasia Kireeva¹ Jean-Christophe Mourrat²

and *W* is independent of *S*.

If P_1 and P_2 are Gaussian channels, then the answer to Question [Q1](#page-0-0) is **positive**.

Class of counterexamples to Question [Q1](#page-0-0)

Let $S \sim \text{Ber}(1/2)$, $X_1, X'_1 \sim P_1(\cdot | S)$ and $X_2, X'_2 \sim P_2(\cdot | S)$, where $P_1(\cdot | s) = \text{Ber}(\varepsilon p_s)$ and $P_2(\cdot | s) = \text{Ber}(\varepsilon q_s)$ for $s \in \{0,1\}$ and some $p_0, p_1, q_0, q_1 \geq 0$ and $\varepsilon > 0$.

If $p_0 = q_1$, $p_1 = q_0$, then

Theorem (informal, [\[3\]](#page-0-2)) The lower bound on the limit of free energy can be obtained through *the unique viscosity solution of certain Hamilton-Jacobi equation*.

$$
2I(X_1, X_2) - I(X_1, X_1') - I(X_2, X_2') \ge \frac{\varepsilon^2 (p_0 - p_1)^6}{6(p_0 + p_1)^4} + o(\varepsilon^2) \qquad (\varepsilon \to 0). \tag{1}
$$

In particular, this implies that whenever $p_0 \neq p_1$ and $\varepsilon > 0$ is sufficiently small the answer to Question [Q1](#page-0-0) is negative.

> and $p_0, p_1, q_0, q_1 \ge 0$ are such that $p_0 = q_1 = a$ and $p_1 = q_0 = b$. Then the mutual information satisfies

and $\Pi^{(1)}_{Nt_1}$ $\frac{(1)}{Nt_1}$ ∼ Poi(*Nt*₁), Π _{*Nt*₂} $\frac{1}{N}$ ∼ $Poi(Nt_2)$, independent of the all other random variables. With this choice of parameters, the mapping $(t_1,t_2) \mapsto \mathscr{I}_N(t_1,t_2)$ is not concave for every sufficiently large *N* ∈ N∪ {∞}.

Mutual information in Stochastic Block Model

Stochastic Block Model (SBM)

Let $G_N = (V, E)$ be a random graph on N vertices. Each vertex is independently assigned to a community ± 1 , and we denote the assignment vector by $\sigma_{\!N}\!\in\!\{\pm 1\}^N$.

Edges are sampled independently as follows.

and $a > b$.

$$
\mathbb{P}((u,v) \in E) = \begin{cases} a_N & \text{if } \sigma_u = \sigma_v \\ b_N & \text{otherwise.} \end{cases}
$$

We consider symmetric SBM with two communities in sparse assortative regime, i.e. the edge probabilities scale as $a_N = a/N$, $b_n = b/N$, for some constant a, b ,

Mutual information in SBM

The mutual information is given by

$$
I(G_N,\sigma)=\mathbb{E}\log\frac{\mathbb{P}(G_N|\sigma)}{\mathbb{P}(G_N)}
$$

Hamilton-Jacobi equations

A recent method to identify the asymptotic value of the mutual information of a mean-field disordered system is through the solution to a certain *Hamilton-Jacobi equation*.

For SBM with two communities this approach has been initiated in [\[2,](#page-0-1) [3\]](#page-0-2).

Lower bound

Upper bound

The central ingredient in showing the matching upper bound in other settings (e.g. [\[1\]](#page-0-3)) is concavity of the *continuous* mutual information.

In particular, the concavity of mutual information in the considered setting would imply the negative semidefiniteness of the Hessian. However, [\(1\)](#page-0-4) implies that

$$
\begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$

$$
\bigg)\cdot\begin{pmatrix}\partial_{t_1}^2\mathscr{I}_N(0,0)&\partial_{t_1}\partial_{t_2}\mathscr{I}_N(0,0)\\ \partial_{t_1}\partial_{t_2}\mathscr{I}_N(0,0)&\partial_{t_2}^2\mathscr{I}_N(0,0)\end{pmatrix}\begin{pmatrix}1\\ -1\end{pmatrix}\geq 0,
$$

where $\mathscr{I}_N(t_1,t_2)$ is the continuous mutual information defined below. Conse-

Theorem Let G_N be an SBM with assignment vector $\sigma = 2S - 1$, where $S \sim \text{Ber}(1/2)$.

Conditionally on σ , we sample independent r.v. $X_1^{(\ell)} \sim P_1$ and $X_2^{(\ell)} \sim P_2$, where

quently, the Hessian is not NSD.

 $P_1(\cdot | s) = \text{Ber}(p_s/N)$ and $P_2(\cdot | s) = \text{Ber}(q_s/N)$ ($s \in \{0,1\}$),

$$
I(G_N,\sigma)=\mathscr{I}_N(0,0),
$$

where

 $\mathscr{I}_{N}(% \mathbb{R}^{N})$

$$
(t_1,t_2):=I\left(S;\left(\left(X_1^{(\ell)}\right)_{\ell\leq \Pi_{Nt_1}^{(1)}},\left(X_2^{(\ell)}\right)_{\ell\leq \Pi_{Nt_2}^{(2)}}\right)\right)
$$

References

- *Henri Lebesgue*, 5:1161–1189, 2022.
-
- *Preprint, arXiv:2209.04513*, 2022.

^[1] Hongbin Chen, Jean-Christophe Mourrat, and Jiaming Xia. Statistical inference of finite-rank tensors. *Annales*

^[2] Tomas Dominguez and Jean-Christophe Mourrat. Infinite-dimensional Hamilton-Jacobi equations for statistical inference on sparse graphs. *Preprint, arXiv:2209.04516*, 2022.

^[3] Tomas Dominguez and Jean-Christophe Mourrat. Mutual information for the sparse stochastic block model.