

Computational lower bounds for multi-frequency group synchronization

Anastasia Kireeva¹ Afonso S. Bandeira¹ Dmitriy Kunisky²

¹ETH Zurich ²Johns Hopkins University

General synchronization model

Let G be a compact group.

Goal: recover $g = (g_1, \ldots, g_n) \in G^n$ from **pairwise** measurements $Y_{kj}, k, j \in [n]$:

 $Y_{kj} = f(g_k g_j^{-1}) + W_{kj}$

for i.i.d. Gaussian random variables W_{kj} .

By considering the Peter-Weyl decomposition of $f(g_k g_j^{-1})$, we can factor the observation into different frequencies (irreducible representations).

Multi-frequency synchronization

Draw a vector $g \in G^n$ by sampling independently each coordinate from Haar (uniform) measure on G.

For each irreducible respresentation ρ we get

$$Y_{kj}^{\rho} = \frac{\lambda}{n} \rho(g_k g_j^{-1}) + \frac{1}{\sqrt{nd_{\rho}}} W_{kj}^{\rho},$$

where W^{ρ} are independent Gaussian ensembles (GOE/GUE/GSE depending on the type of ρ) and d_{ρ} is dimension of ρ .

Prior work: Single frequency

Spectral threshold

In the single frequency case, the model can be seen as a *Wigner spiked matrix model*:

$$Y = \frac{\lambda}{n}xx^* + \frac{1}{\sqrt{n}}W.$$

BBP transition: change of the matrix spectrum at the spectral threshold $\lambda = 1$

For $\lambda < 1$, PCA does not For $\lambda > 1$, detection is provide strong detection possible based on the top eigenvalue of Y

For many dense priors (e.g., angular synchronization, \mathbb{Z}_2), no algorithm can surpass the spectral threshold.

We can model receiving pairwise information as receiving a "score" $z_{kj}(h)$ for each possible group element $h \in G$ measuring how likely it is that $g_k g_j^{-1} = h$.

Consider the score function as a noisy indicator of a form

$$z_{kj}(h) = \begin{cases} \gamma + w_{kj}(h) & \text{if } h = g_k g_j^{-1}, \\ w_{kj}(h) & \text{otherwise,} \end{cases}$$

where $\gamma > 0$ and $w_{kj}(h) \sim \mathcal{N}(0, 1)$.

This model is equivalent to the multi-frequency synchronization (1) with $\gamma = \lambda \sqrt{2L/n}$.

Low-degree polynomials

Statistical distinguishability

Definition A sequence of functions $f_n : \mathcal{S} \to \{p,q\}$ achieves *strong detection* between \mathbb{P}_n and \mathbb{Q}_n if

if $Y \sim \mathbb{P}_n$ then $f_n(Y) = p$ with probability 1 - o(1);

Example: Angular synchronization

Let $x_j \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\{e^{i\varphi}, \varphi \in [0, 2\pi)\}).$

 $\begin{cases} Y_1 = \frac{\lambda}{n} x x^* + \frac{1}{\sqrt{n}} W_1, \\ Y_2 = \frac{\lambda}{n} x^{(2)} (x^{(2)})^* + \frac{1}{\sqrt{n}} W_2, \\ \vdots \\ Y_L = \frac{\lambda}{n} x^{(L)} (x^{(L)})^* + \frac{1}{\sqrt{n}} W_L. \end{cases}$

Here $x^{(k)}$ denotes the entrywise k-th power and W_1, \ldots, W_L are independent Gaussian unitary ensembles.

Multi-frequency model: Naïve bound

Given L independent draws of a single frequency,

$$Y_j = \frac{\lambda}{n} x x^* + \frac{1}{\sqrt{n}} W_j, \quad j \in [L]$$

PCA would indeed detect the signal once $\lambda > 1/\sqrt{L}$.

One might expect that it is possible to combine information from multiple frequencies in a similar way; however this prediction is too optimistic for the multi-frequency model due to additional algebraic structure. In particular, it is provably impossible to detect the signal below $\Theta(\sqrt{\log L/L})$ for synchronization over \mathbb{Z}_L .

At what signal-to-noise ratio λ does detection by an efficient algorithm become possible?

(1)

Main result: λ_{comp} equals the spectral threshold

Two settings:

- angular synchronization with *L* frequencies
- synchronization over finite group G of size L

Theorem: Let L = O(1). Assuming the Low-Degree Conjecture holds, if $\lambda \leq 1$, any algorithm for strong detection requires runtime at least $\exp(\tilde{\Omega}(n^{1/3}))$.

Example: Statistical-to-Computational gap for \mathbb{Z}_L **synchronization** $(L \ge 11)$

possible but hard Casy		impossible		possible but hard	easy	N
------------------------	--	------------	--	-------------------	------	---

if $Y \sim \mathbb{Q}_n$ then $f_n(Y) = q$ with probability 1 - o(1).

Low-degree likelihood ratio

The low-degree polynomials framework provides a criterion for analyzing the hardness of statistical inference problems.

The degree-D likelihood ratio $L_n^{\leq D}$ is defined as the projection of L_n to the linear subspace of polynomials of degree at most D, i.e.,

$$L_n^{\leq D} := \mathcal{P}^{\leq D} L_n = \mathcal{P}^{\leq D} \left(\frac{\mathrm{d}\mathbb{P}_n}{\mathrm{d}\mathbb{Q}_n} (Y) \right),$$

where $\mathcal{P}^{\leq D}$ is an orthogonal projection operator with respect to the inner product $\langle p, q \rangle = \mathbb{E}_{Y \sim \mathbb{Q}_n} p(Y) q(Y)$.

Low-degree conjecture

Conjecture: For "sufficiently natural" sequences of distributions \mathbb{P}_n , \mathbb{Q}_n , if $||L_n^{\leq D}||^2$ remains bounded as $n \to \infty$, then strong detection requires runtime at least $\exp(\tilde{\Omega}(D))$.

Open problems

Statistical thresholds

The statistical thresholds for multi-frequency models are unknown, however, can be analyzed through studying the landscape of the replica potential [5].

Synchronization over infinite groups

Extend results to SO(d), $d \ge 3$, for applications like Cryo-EM.

Non-constant number of frequencies

The *"possible but hard"* regime corresponds to the statistical-to-computational gap in the low-degree sense. Strong detection is information-theoretically possible; however, conjecturally, there are no efficient algorithms achieving it.

Takeaway: Adding more frequencies does not give a computational advantage.

Proof idea: Finite groups

Rewrite the low-degree likelihood ratio in terms of integer random variables $n_h := \{j \in [n] : g_j = h\}, h \in G$.

$$\|L_n^{\leq D}\|^2 = \sum_{d=0}^D \frac{1}{d!} \frac{\lambda^{2d}}{n^d} \mathbb{E} \left(\frac{L-1}{2} \sum_{h \in G} n_h^2 - \frac{1}{2} \sum_{\substack{g,h \in G \\ g \neq f}} n_g n_h\right)^d.$$

Eliminate each n_h iteratively by taking conditional expectation.

Proof idea: Angular model

Detection by low-degree polynomials in the angular synchronization model with L frequencies is **at least as hard** as detection in model over \mathbb{Z}_L :

$$\|L_{n,\mathbb{S}}^{\leq D}\|^2 \leq \|L_{n,\mathbb{Z}_L}^{\leq D}\|^2,$$

where $L_{n,\mathbb{S}}^{\leq D}$ is the low-degree likelihood ratio for detection in the angular model, and $L_{n,\mathbb{Z}_L}^{\leq D}$ for \mathbb{Z}_L model. Numerical simulations in [1] suggest the possibility of surpassing the spectral threshold using an efficient algorithm when $L = \Omega(1)$. The computational threshold for low-degree polynomials in this setting is unknown.

References

- [1] Tingran Gao and Zhizhen Zhao. Multi-frequency phase synchronization. In *International Conference on Machine Learning*, 2019.
- [2] Anastasia Kireeva, Afonso S Bandeira, and Dmitriy Kunisky. Computational lower bounds for multi-frequency group synchronization. *arXiv preprint arXiv:2406.03424*, 2024.
- [3] Amelia Perry, Alexander Wein, Afonso Bandeira, and Ankur Moitra. Message-passing algorithms for synchronization problems over compact groups. *Communications on Pure and Applied Mathematics*, 71, 2016.
- [4] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-optimality of pca for spiked random matrices and synchronization. *arXiv preprint arXiv:1609.05573*, 2016.
- [5] Kaylee Y Yang, Timothy LH Wee, and Zhou Fan. Asymptotic mutual information in quadratic estimation problems over compact groups. *arXiv preprint arXiv*:2404.10169, 2024.