

Computational lower bounds for multi-frequency group synchronization

Anastasia Kireeva¹ Afonso S. Bandeira¹ Dmitriy Kunisky²

> ¹ETH Zurich ² Johns Hopkins University

General synchronization model

Let *G* be a compact group.

Goal: recover $g = (g_1, \ldots, g_n) \in G^n$ from **pairwise** measurements Y_{kj} , $k, j \in [n]$:

By considering the Peter-Weyl decomposition of $f(g_k g_j^{-1})$ $\binom{-1}{j},$ we can factor the observation into different frequencies (irreducible representations).

$$
Y_{kj} = f(g_k g_j^{-1}) + W_{kj}
$$

Draw a vector $g \in G^n$ by sampling independently each coordinate from Haar (uniform) measure on *G*.

for i.i.d. Gaussian random variables *Wkj*.

Multi-frequency synchronization

 $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ $Y_1 =$ *λ n* $xx^* +$ 1 √ *n W*1*,* $Y_2 =$ *λ n* $x^{(2)}(x^{(2)})^* +$ 1 $\frac{1}{\sqrt{2}}$ *n W*2*,* . . . $Y_L =$ *λ n* $x^{(L)}(x^{(L)})^* +$ 1 $\frac{1}{\sqrt{2}}$ *n WL.*

For each irreducible respresentation *ρ* we get

BBP transition: change of the matrix spectrum at the spectral threshold $\lambda = 1$

$$
Y_{kj}^{\rho} = \frac{\lambda}{n} \rho(g_k g_j^{-1}) + \frac{1}{\sqrt{nd_{\rho}}} W_{kj}^{\rho},
$$

where W^{ρ} are independent Gaussian ensembles

kj, (1)

Main result: λ **_{comp} equals the spectral threshold**

For $\lambda < 1$, PCA does not For $\lambda > 1$, detection is provide strong detection possible based on the top eigenvalue of *Y*

(GOE/GUE/GSE depending on the type of *ρ*) and *d^ρ* is dimension of *ρ*.

For many dense priors (e.g., angular synchronization, \mathbb{Z}_2), no algorithm can surpass the spectral threshold.

Example: Angular synchronization

Let $x_j \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\{e^{i\varphi}, \varphi \in [0, 2\pi)\}).$

One might expect that it is possible to combine information from multiple frequencies in a similar way; however this prediction is too optimistic for the multi-frequency model due to additional algebraic structure. In particular, it is provably impossible to detect the signal below $\Theta(\sqrt{\log L/L})$ for synchronization over $\mathbb{Z}_L.$

Here *x* (*k*) denotes the entrywise *k*-th power and *W*1*, . . . , W^L* are independent Gaussian unitary ensembles.

Prior work: Single frequency

Spectral threshold

In the single frequency case, the model can be seen as a *Wigner spiked matrix model*:

$$
Y = \frac{\lambda}{n} x x^* + \frac{1}{\sqrt{n}} W.
$$

Rewrite the low-degree likelihood ratio in terms of integer random variables $n_h := \{j \in [n] : g_j = h\}, h \in G$.

Detection by low-degree polynomials in the angular synchronization model with *L* frequencies is at least as hard as detection in model over \mathbb{Z}_L :

Multi-frequency model: Naïve bound

Given *L* independent draws of a single frequency,

$$
Y_j = \frac{\lambda}{n} x x^* + \frac{1}{\sqrt{n}} W_j, \quad j \in [L],
$$

PCA would indeed detect the signal once *λ >* 1*/* √ *L*. This model is equivalent to the multi-frequency synchro-nization [\(1\)](#page-0-2) with $\gamma = \lambda \sqrt{2L/n}$.

At what signal-to-noise ratio *λ* does detection by an efficient algorithm become possible?

Two settings:

The *degree-D* likelihood ratio $L_n^{\le D}$ $\frac{<}{n}^D$ is defined as the projection of *Lⁿ* to the linear subspace of polynomials of degree at most *D*, i.e.,

- angular synchronization with *L* frequencies
- synchronization over finite group *G* of size *L*

Theorem: Let $L = O(1)$. Assuming the Low-Degree Conjecture holds, if $\lambda \leq 1$, any algorithm for strong detection requires runtime at least $\exp(\tilde{\Omega}(n^{1/3})).$

Example: Statistical-to-Computational gap for \mathbb{Z}_L **synchronization** ($L \geq 11$)

impossible but hard easy

if $Y \sim \mathbb{Q}_n$ then $f_n(Y) = q$ with probability $1 - o(1)$.

Conjecture: For "sufficiently natural" sequences of distributions \mathbb{P}_n , \mathbb{Q}_n , if $||L_n^{\le D}||^2$ remains bounded as $n \to \infty$, then strong detection requires runtime at least $\exp(\tilde{\Omega}(D)).$

The statistical thresholds for multi-frequency models are unknown, however, can be analyzed through studying the landscape of the replica potential [\[5\]](#page-0-3).

Extend results to $SO(d)$, $d \geq 3$, for applications like Cryo-EM.

The *"possible but hard"* regime corresponds to the statistical-to-computational gap in the low-degree sense. Strong detection is information-theoretically possible; however, conjecturally, there are no efficient algorithms achieving it.

Takeaway: Adding more frequencies does not give a computational advantage.

Proof idea: Finite groups

$$
||L_n^{\leq D}||^2=\sum_{d=0}^D\frac{1}{d!}\frac{\lambda^{2d}}{n^d}\mathbb{E}\Big(\frac{L-1}{2}\sum_{h\in G}n_h^2-\frac{1}{2}\sum_{\substack{g,h\in G\\ g\neq f}}n_gn_h\Big)^d.
$$

Eliminate each *n^h* iteratively by taking conditional expectation.

Proof idea: Angular model

$$
\|L_{n,\mathbb S}^{\leq D}\|^2\leq\|L_{n,\mathbb Z_L}^{\leq D}\|^2,
$$

where $L_{n\, \mathbb{S}}^{\leq D}$ $\leq_{n,\mathbb{S}}^D$ is the low-degree likelihood ratio for detection in the angular model, and $L_n^{\leq D}$ $\stackrel{ \leq D}{_{n,\mathbb{Z}_L}}$ for \mathbb{Z}_L model.

We can model receiving pairwise information as receiving a "score" $z_{kj}(h)$ for each possible group element $h \in G$ measuring how likely it is that $g_k g_j^{-1} = h$.

Consider the score function as a noisy indicator of a form

$$
z_{kj}(h) = \begin{cases} \gamma + w_{kj}(h) & \text{if } h = g_k g_j^{-1}, \\ w_{kj}(h) & \text{otherwise}, \end{cases}
$$

where $\gamma > 0$ and $w_{kj}(h) \sim \mathcal{N}(0, 1)$.

Low-degree polynomials

Statistical distinguishability

Definition A sequence of functions f_n : $S \rightarrow \{p,q\}$ achieves *strong detection* between \mathbb{P}_n and \mathbb{Q}_n if

if $Y \sim \mathbb{P}_n$ then $f_n(Y) = p$ with probability 1 − o(1);

Low-degree likelihood ratio

The low-degree polynomials framework provides a criterion for analyzing the hardness of statistical inference problems.

$$
L_n^{\leq D} := \mathcal{P}^{\leq D} L_n = \mathcal{P}^{\leq D} \left(\frac{\mathrm{d} \mathbb{P}_n}{\mathrm{d} \mathbb{Q}_n} (Y) \right),
$$

where $\mathcal{P}^{\leq D}$ is an orthogonal projection operator with respect to the inner product $\langle p, q \rangle = \mathbb{E}_{Y \sim \mathbb{Q}_n} p(Y) q(Y)$.

Low-degree conjecture

Open problems

Statistical thresholds

Synchronization over infinite groups

Non-constant number of frequencies

Numerical simulations in [\[1\]](#page-0-4) suggest the possibility of surpassing the spectral threshold using an efficient algorithm when $L = \Omega(1)$. The computational threshold for lowdegree polynomials in this setting is unknown.

References

- [1] Tingran Gao and Zhizhen Zhao. Multi-frequency phase synchronization. In *International Conference on Machine Learning*, 2019.
- [2] Anastasia Kireeva, Afonso S Bandeira, and Dmitriy Kunisky. Computational lower bounds for multi-frequency group synchronization. *arXiv preprint arXiv:2406.03424*, 2024.
- [3] Amelia Perry, Alexander Wein, Afonso Bandeira, and Ankur Moitra. Message-passing algorithms for synchronization problems over compact groups. *Communications on Pure and Applied Mathematics*, 71, 2016.
- [4] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-optimality of pca for spiked random matrices and synchronization. *arXiv preprint arXiv:1609.05573*, 2016.
- [5] Kaylee Y Yang, Timothy LH Wee, and Zhou Fan. Asymptotic mutual information in quadratic estimation problems over compact groups. *arXiv preprint arXiv:2404.10169*, 2024.